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Abstract— Solution concepts help designing co-evolutionary
algorithms by interfacing search mechanisms and problems.
This work analyses co-evolutionary dynamics by coupling the
notion of solution concept with a Markov chain model of co-
evolution. It is shown that once stationarity has been reached
by the Markov chain, and given a particular solution concept
of interest, the dynamics can be seen as a Bernoulli process
describing how the algorithm visits solution and non-solution
sets. A particular analysis is presented using the Iterated Pris-
oner’s Dilemma. By numerically computing the Markov chain
transition matrices and stationary distributions, a complex and
strong relation between variation and selection is observed.

I. INTRODUCTION

Solution concepts help designing co-evolutionary algo-
rithms by interfacing co-evolutionary search mechanisms and
problems [1]. For an arbitrary point in the search space, a
given solution concept will determine whether it could be
considered as a satisfactory solution or not. Several patholo-
gies present in co-evolutionary algorithms are hypothesized
to be caused by a lack of rigour in solution concepts [1].
Then, adequately coupling a solution concept of interest with
a particular co-evolutionary search mechanism will possibly
diminish such pathologies. Accordingly, we aim at charac-
terising the parameter space of a co-evolutionary algorithm
given a solution concept for the benchmark problem of the
emergence of cooperation in the Iterated Prisoner’s Dilemma.

It has been shown that under certain conditions, a class
of co-evolutionary algorithms can be described as Markov
chains. Using simple operators of mutation and selection, and
a simple representation, the resulting Markov chain (MC) is
ergodic. Ergodicity implies that the dynamics is described
in the long-term by a stationary probability distribution on
the space of populations [2], i.e., once stationarity has been
reached, the dynamics is completely described by indepen-
dent samples of such stationarity distribution.

In this work, the co-evolutionary dynamics is studied in
the long-term by analysing the solution visiting process that
results from describing the way the asymptotic dynamics of
the MC visits the partition defined by a solution concept,
which turns out to be a Bernoulli process. The idea behind
this approach is to suggest a particular path towards the study
of how adequately tunned combinations of co-evolutionary
search mechanisms and solution concepts may improve the
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quality of solutions in certain problems. An analysis is
presented studying the emergence of cooperation in the
multi-level Iterated Prisoner’s Dilemma.

II. PRELIMINARIES

A. Co-evolutionary search as a Markovian process

This section is based on the model presented by Liekens
[2], which allows to view co-evolutionary dynamics as a
MC. It uses a simple genetic representation and an evalu-
ation scheme based on averaging two-player game results.
In addition to a proportional selection operator, an elitist
selection operator is introduced to analyse the effects of
strong selection.

1) Individuals and Populations: Consider the set of possi-
ble strategies (individuals) X = {1, 2, ..., n} for an arbitrary
two-player game described by a n× n matrix A. The space
of possible populations of r individuals is thus given by the
set P of multisets of size r, whose elements are in X.

A population x = [x(1), x(2), ..., x(r)], could be repre-
sented as a vector px of size n, in which the j− th element,
with j ∈ X, is the proportion of elements of type j in
population x, denoted p(j,x).

2) Evaluation: The fitness of an individual will be its
average payoff from playing all the individuals in the same
evolving population. Then, at generation t, the fitness of
individual i in population x(t) will be given by:

f(i,x(t)) =
∑

j∈X

Ai,jp(j,x(t)) (1)

where Ai,j is the payoff received by strategy i when it plays
against strategy j.

3) Selection: Given f(i,x(t)), the probability of selecting
individual i from population x(t) is given by:

sp(i,x(t)) =
f(i,x(t))p(i,x(t))

Σj∈Xf(j,x(t))p(j,x(t))

This selection operator selects individuals in proportion to
their fitness and number of copies in the population.

In addition, a strongly narrow elitist selection operator
will be considered here. This turns out to be particularly
suitable to have an insight into the role of elitism in
co-evolutionary settings.

Let M(x(t)) denote the set of individuals with maximum
fitness value in population x(t), i.e.,
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M(x(t)) = {i ∈ x(t)|f(i,x(t)) = max
j∈x(t)

f(j,x(t))} (2)

Then, the probability of selecting individual i from popula-
tion x(t) is:

se(i,x(t)) =
1M(x(t))(i)
|M(x(t))| (3)

where 1M(x(t))(a) is 1 if a is in x(t), and 0 otherwise.

4) Variation Operator: A simple variation operator is
considered. An individual i will be mutated with probability
µ into another individual j, which will be uniformly chosen
from set X − {i}, i.e., with probability 1

n−1 .

The operator described is a strong asexual variation oper-
ator. Notice that sexual reproduction (recombination) is not
considered in this case.

5) Reproduction: Let m(i,x(t)) be the probability that an
individual i becomes part of the next population, x(t+1). If
s∗(i,x(t)) denotes the selection probability associated to the
selection operator to be used (either se(i,x(t)) or sp(i,x(t))),
then m(i,x(t)) can be expressed as:

m(i,x(t)) = (1 − µ)s∗(i,x(t)) + µ
1

n − 1

∑

j �=i

s∗(j,x(t))

= (1 − µ)s∗(i,x(t)) +
µ

n − 1
(1 − s∗(i,x(t)))

(4)

6) Transition Matrix and Long-term dynamics: Since
population size is r, the probability measure defined by
m(i,x(t)) on X has to be sampled r times in order to get
the new population. This sampling procedure is claimed to
introduce drift effects that cannot be predicted using evolu-
tionary game theory techniques [2]. In order to determine
the probability that a population x(t+1) be generated from a
population x(t), a multiniomial distribution is used. Thus,

Pr[E(x(t)) = x(t+1)] =
r!∏

i∈X(rp(i,x(t+1)))!

∏

i∈X

m(i,x(t))rp(i,x(t+1)), (5)

Where E(x(t)) is the operator representing the result of a
step of the Markov chain when it is applied to the population
x(t).

Once m(i,x(t)) is completely identified, it can be shown
that the MC defined by the probability above is ergodic
whenever µ �= 0. Hence, an associated stationary distribution
on populations describing the long-term dynamics of the
system could be calculated.

B. Solution Concepts in Co-evolution

A solution concept is a binary partition of the search space
that determines whether a particular point in the space is
a solution or not, i.e., it partitions the search space into

two classes: solutions and non-solutions. A solution concept
is required regardless the domain or the representations
involved in the problem [3], [1].

Solution concepts are inherent to search problems, but
search mechanisms must implement them properly in order
to succeed. Thus, solution concepts provide the bridge be-
tween search problems and search mechanisms.

In designing a co-evolutionary algorithm, it is important
to consider whether the solution concept implemented by
the algorithm (i.e., the set of individuals to which it may
converge) corresponds with the intended solution concept
[1]. It is argued that the cause of several pathologies found
in co-evolutionary methods are due to a trivial approach to
coupling solution concepts of interest with co-evolutionary
search methods.

C. IPD and multi-level IPD

The abstract mathematical game known as the Prisoner’s
Dilemma (PD) has been widely studied in several disciplines
to analyse the emergence of cooperative behaviour [4], [5].
In its simplest form the prisoner’s dilemma is a two-choice
game described by the following matrix:

TABLE I

PAYOFF MATRIX FOR THE PRISONER’S DILEMMA

Player 1
Cooperate Defect

Player 2 Cooperate (R,R) (S,T)
Defect (T,S) (P,P)

where T > R > P > S and R > S+T
2 .

A dilemma arises in the game due to the fact that if both
players were purely rational, they would never cooperate. In
this work, the parameters of the game are chosen as T = 5,
R = 4, P = 1 and S = 0.

In the multi-level PD, individuals have more than two
strategies to play. This is intended towards modelling more
accurate real-world dilemmas. The payoffs for the multi-
level PD are a linear interpolation of the payoffs for the
simple 2-choices PD. Here, strategies will be represented as
real numbers in the interval [−1, 1], where 1 represents full
cooperation and −1 represents full defection. For instance,
a 4-choice matrix (specifying payoffs for one player) is:

TABLE II

PAYOFF MATRIX FOR THE 4-LEVEL PRISONER’S DILEMMA

Player 1
1 1/3 -1/3 -1

1 4 2 2
3

1 1
3

0

Player 2 1/3 4 1
3

3 1 2
3

1
3

-1/3 4 2
3

3 1
3

2 2
3

-1 5 3 2
3

2 1
3

1

In the iterated Prisoner’s Dilemma (IPD), the game de-
scribed above is played several times, which allows agents
to switch choices and thus, exhibit mutual cooperation or
retaliation. The IPD game is widely regarded as a standard
model for the evolution of cooperation, and constitutes a
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benchmark problem in the co-evolution of game strategies
[6].

Co-evolution in the IPD occurs when the fitness of indi-
viduals is assessed by confronting them with other playing
individuals. The fitness of an individual is usually the average
payoff obtained by confronting other individuals in the same
population. In this case, a dynamic landscape arises from
strategic interaction.

In general, it has been shown that for co-evolution in
the multiple-level IPD, introducing more choices reduces the
frequency of mutual cooperation [7], [8]. While many works
in this area evolve trigger strategies for the IPD (e.g, tit-for-
tat-like strategies, rules, etc) [9], [10], in this work choices
will be evolved, and the main aim is to produce populations
in which cooperative individuals are abundant.

III. SOLUTION CONCEPTS IMPLY A BERNOULLI

DISTRIBUTION IN THE LONG-TERM

When a solution concept is coupled to the stationary
distribution that describes the asymptotic dynamics of co-
evolutionary search, it defines a solution visiting process
that shows how such dynamics visits solutions and non-
solutions, as defined by the solution concept. Notice that
once stationarity has been reached, and due to the ergodic
nature of the Markov Chain, each population can be seen
as an independent realisation of the stationary distribution,
therefore, the solution visiting process can be seen as a series
of independent Bernoulli trials (as it visits solutions and non-
solutions).

Formally, let η be the stationary distribution on the pop-
ulation space P, associated to the Markov chain defined by
the search mechanism. Also, let [PS , PN ] be the partition
of P defined by a solution concept, with PS the solution
set and PN the non-solution set. Considering as success
a visit to one of the solutions defined by the solution
concept, then probabilities p and q, namely success and
failure probabilities, are defined by

p =
∑

x∈PS

η(x), and q = 1 − p; (6)

thus, the independent process Yt, t =, 1, 2, ... with

Pr(Yt = 1) = p (7)

is the Bernoulli process that describes the solution visiting
process in the long term.

The probability p, that defines this process changes when
the parameters of the co-evolutionary process are modified.
How p changes, when the parameters of co-evolutionary
search are modified, will be the subject of study in next
section.

IV. RESULTS: THE ITERATED PRISONER’S DILEMMA

WITH MULTIPLE LEVELS OF COOPERATION

In this section, we will study how different search mech-
anisms (i.e., co-evolutionary search with different levels of
variation and different selection schemes) implement a family
of solution concepts, strictly related to the emergence of

cooperation in the IPD game. In the context of the Bernoulli
process defined above, the probability of success induced by
different parameters of the co-evolutionary algorithm will be
calculated.

A. Level of cooperation Solution concept

In the context of the IPD, we are interested in finding
populations in which cooperation is spread. Thus, it is
important to emphasise that solutions will be collectives
(instead of individuals), and then, we will define a solution
concept on populations of strategies in the IPD game.

As mentioned before, individuals will be choices repre-
sented as numbers in the interval [−1, 1], where −1 means
full defection and 1 means full cooperation. Thus, given a
population of strategies x = {x(1), x(2), ..., x(r)}, the level
of cooperation of x is defined as:

L(x) =
r∑

i=1

x(i) (8)

Notice that the level of cooperation of a population in-
creases with the number of cooperative individuals in it.
Then, for an arbitrary level of cooperation T , the level of
cooperation solution concept is defined as:

PS = {x|L(x) ≥ T}
PN = {x|L(x) < T}

(9)

Thus, a solution will be a population that satisfies a minimum
cooperation threshold T .

B. Parameters

In this work, the classic IPD and the multiple level IPD
with 3 and 4 levels of cooperation will be considered. The
parameters used to generate the IPD games are the ones
reported in section II-C. Thus, in the classic IPD game the set
of choices is {−1, 1}, and for the 3-level and 4-level cases
they are {−1, 0, 1} and {−1,−1

3 , 1
3 , 1} respectively.

The transition matrix (as described above) associated to
different levels of mutation, selection mechanisms (either
elitist or proportional), and population sizes of 10 and 20
individuals will be calculated using equation 5. Another pa-
rameter will be the solution concept, defined by a minimum
level of satisfactory cooperation T (see eq. 9). Notice that
minimum levels of cooperation satisfy −r � T � r; a
population with level r is completely cooperative while a
population with level −r is completely defective.

The results will be presented as follows. Given a popula-
tion size r, an IPD game, a selection mechanism and a muta-
tion rate; the transition matrix that describes co-evolutionary
dynamics is calculated using equation 5. Then, the associated
stationary distribution is numerically computed, and p is
calculated for all the possible values of T (using eq. 6).
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C. Results

The graphics below show how different parameters such as
mutation rate, IPD game, population size, selection mecha-
nism, and minimum satisfactory level of cooperation impact
p, i.e., the probability of success associated to a Bernoulli
process once stationarity has been reached in the long-term.

Each curve shows how well a co-evolutionary algorithm
performs for a particular solution concept in the long-term,
when the mutation rate is changed using a fixed selection
scheme.

1) General Observations: Each solution concept can be
interpreted as a measure of how hard the problem is, i.e.,
the greater the cooperation threshold is, the harder it is to
find a satisfactory population. Notice that there is always a
trivial solution concept, when T equals −r, for which all
the populations are cooperative enough, thus a solution is
reached in the long-term with probability p equal to 1.

Notice that due to the nature of solution concepts defined
in this work, p is always a positive probability, since there
is at least one population in P whose level of cooperation
is T . This feature highlights the need for coupling solution
concepts and search mechanisms: while solution concepts
define what to look for, search mechanisms defines where to
look.

Note that when proportional selection is used (see figures
1, 3, 5, 7 and 9), if p is seen as a function of µ it
appears to be monotonically increasing for large values of T ,
i.e., the harder the problem is, the greater variation should
be introduced in order to gain a significant probability of
success. From the graphics, it is also clear that as the
cooperation threshold increases, it becomes less likely to find
mutually cooperating populations.
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Fig. 1. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 2-Level IPD
with 10 individuals and proportional selection

2) Role of Mutation and Selection: It can be observed
in the graphics that high mutation tends to be beneficial in
general. However, when elitist selection is used (see figures 2,
4, 6, 8 and 10), there appears to be an intermediate optimum
level of mutation for which p is maximum. This does not
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Fig. 2. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 2-Level IPD
with 10 individuals and elitist selection
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Fig. 3. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 2-Level IPD
with 20 individuals and proportional selection
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Fig. 4. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 2-Level IPD
with 20 individuals and elitist selection
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Fig. 5. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 3-Level IPD
with 10 individuals and proportional selection
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Fig. 6. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 3-Level IPD
with 10 individuals and elitist selection
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Fig. 7. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 3-Level IPD
with 20 individuals and proportional selection
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Fig. 8. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 3-Level IPD
with 20 individuals and elitist selection
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Fig. 9. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 4-Level IPD
with 10 individuals and proportional selection
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Fig. 10. Probability of success for multiple mutation rates and solution
concepts defined by a minimum level of cooperation using 4-Level IPD with
10 individuals and elitist selection
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hold for proportional selection cases, in which maximum p
appears when mutation is the maximum value. This effect is
more evident as the difficulty of the problem, posed by the
solution concept, increases.

On the other hand, it can also be observed that elitism
is beneficial specially in hard problems. Notice that when
proportional selection is used, values of p decrease faster
for increasing minimum levels of cooperation. This effect
appears to be more evident as more choices are introduced.

3) Impact of the number of choices: It can be observed
that as more choices are introduced, less mutual cooperation
is likely to evolve in the long term. Note, for instance, that
for 2-level games (figures 1, 2, 3 and 4) and high mutation
long-term Bernoulli trials approach a flipping coin. This is
considerably different from what happens for 3 and 4-level
games (figures 5, 6, 7, 8, 9 and 10), when probability of
success p is actually increased with the help of a strong
(elitist) selection.

4) Impact of population size: Since only two values of
population size were considered, there is no enough evidence
at this point to formulate any hypotheses with regard to
this parameter. Exploring more values of population sizes
would require considerable more computational power. This
remains to be a very important parameter, since it is hypothe-
sized to introduce important drift effects [11]. For the values
studied here, shapes of the graphics are somehow preserved
when fixing the other parameters.

V. CONCLUSION AND FURTHER WORK

The main result of this work is the introduction of a
Bernoulli visiting process tied to a given solution concept,
as a way to gain insight into how co-evolutionary search
parameters may be more or less adequate in implementing
certain solution concepts in the long-term.

A preliminary analysis is presented using the benchmark
problem of the IPD. Although other studies use different
representations and models, general empirical suggestions
in other works are verified [10], [9]. Particularly, in regard
to the negative effects of several choices when it comes to
finding cooperative strategies, and the benefits of high values
of variation as a useful mechanism to generate behavioural
diversity.

It is arguable that an adequate combination of variation
and selection forces may work out better for certain problems
(solution concepts). In the light of a complex relationship be-
tween selection and variation, strongly mediated by solution
concepts, the importance of introducing solution concepts
into frameworks of dynamic analysis is emphasized.

It is important to keep in mind that the results of this work
are limited to the long-term behaviour, since the analysis is
performed once the MC has converged to stationarity.

However, in many practical applications the transient be-
haviour is important since usually the time a MC takes to
reach stationarity is unknown (and long). As a further direc-
tion to gain insight into transient dynamics and convergence
times, an approach similar to [12] is suggested.

Many questions remain open and several paths are sug-
gested to continue this study. It is important to consider other
games with different structures and motivations. Also, it is
necessary to consider more solution concepts. The elements
involved in this analysis can be extended and certainly
enriched by incorporating formal tools of statistical analysis
of Bernoulli processes (geometric distributions, MC burn-in
times, etc). The results also suggest that it may be fruitful to
work on dynamic adaption of selection and mutation schemes
in co-evolution, since fixed values may not be enough for the
rich dynamics introduced by co-evolutionary landscapes.
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